EVALUASI KINERJA AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER (STUDI KASUS : UNIVERSITAS BINA DARMA)
Abstract
Kinerja akademik mahasiswa merupakan hal yang sangat penting untuk di evaluasi sehingga dengan evaluasi tersebut dapat ditemukan faktor-faktor yang mendukung peningkatan kinerja akademik. Penelitian telah melakukan klasifikasi kinerja akademik berdasarkan data akademik mahasiswa tahun akademik 2010-2014 yang diperoleh dari Direktorat akademik Universitas Bina Darma menggunakan metode data mining. Sebagai dasar proses klasifikasi, atribut yang digunakan dalam penelitian ini meliputi nomor induk mahasiswa, nama, jenis kelamin, asal sekolah, tempat tanggal lahir, kota asal, program studi, indeks prestasi semester, indeks prestasi kumulatif, target kelulusan. Dari data yang didapatkan, penulis melakukan proses pengklasifikasian data kedalam beberapa kategori, yaitu kinerja akademik tinggi , sedang, rendah, dan sangat rendah, serta kategori mahasiswa yang lulus tepat waktu atau tidak tepat waktu. Kemudian, dari hasil pengklasifikasian tersebut dapat digunakan sebagai solusi untuk menentukan kinerja akademik yang optimal. Berdasarkan hasil pengujian menggunakan metode klasifikasi naïve bayes Clasifier terhadap data set yang digunakan, diperoleh sebanyak 50,45% mahasiswa dikategorikan pada tingkat kinerja sedang, serta 61,64% mahasiswa menyelesaikan studinya dengan target tepat waktu atau paling lama 8 semester.
Kata Kunci : Kinerja Akademik, Data Mining, Naive Bayes Classifier.
Full Text:
PDF (Bahasa Indonesia)DOI: http://dx.doi.org/10.26798/jiko.v5i2.227
Article Metrics
Abstract view : 1548 timesPDF (Bahasa Indonesia) - 521 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Muhammad Nasir, Verawaty Verawaty, Vivi Sahfitri