Prediksi Kunjungan Wisatawan Mancanegara Di Bandara Ngurah Rai Tahun 2025 Menggunakan Model ARIMA Musiman
Abstract
Penelitian ini bertujuan untuk memprediksi kunjungan wisatawan mancanegara di Bandara Ngurah Rai, Bali, pada tahun 2025 menggunakan model ARIMA musiman (1,1,1)x(1,1,1,12). Data historis kunjungan bulanan dari tahun 2008 hingga 2024 (sekitar 61,17 juta kunjungan) yang bersumber dari Badan Pusat Statistik (BPS) diolah
menggunakan Python, dengan langkah interpolasi nilai hilang dan koreksi anomali pandemi sebesar 50% dari rata-rata kunjungan 2015–2019. Hasil prediksi menunjukkan sekitar 6,6 juta kunjungan pada 2025, dengan
puncak pada Juli (sekitar 650 ribu, atau 21,7 ribu/hari) dan Desember (sekitar 630 ribu). Uji ADF (p-value < 0,05) dan Ljung-Box (p-value 0,12) memvalidasi model. Ngurah Rai diprediksi melampaui Soekarno-Hatta (sekitar 3,3 juta kunjungan), mencerminkan daya tarik Bali yang konsisten dengan tren global. Prediksi ini mendukung perencanaan kapasitas bandara dan strategi promosi musiman, khususnya pada Juli, melalui festival budaya dan diskon penerbangan. Analisis ini memperkuat peran informatika dalam pengambilan keputusan pariwisata berkelanjutan.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Badan Pusat Statistik. (2024) Data kunjungan wisatawan mancanegara indonesia. https://www.bps.
go.id/... Accessed: 2024.
M. Antara and M. S. Sumarniasih, “Role of tourism in economic recovery post-covid-19: Evidence
from bali,” J. Asian Finance, Econ. Bus., vol. 8, no. 5, pp. 1045–1053, 2021.
A. Smith, “Global tourism recovery post-covid,” J. Tour. Econ., vol. 10, no. 2, pp. 45–60, 2023.
UNWTO, “World tourism barometer,” UNWTO, vol. 22, no. 1, 2024.
I. Setiawan and I. G. A. O. Suryawardani, “Impact of overtourism on bali’s sustainable tourism de-
velopment: A case study of ngurah rai airport capacity,” Int. J. Sustain. Dev. Plan., vol. 17, no. 5, pp.
–1512, 2022.
I. G. B. R. Utama and C. P. Trimurti, “Factors affecting visiting behavior to bali during the covid-19
pandemic: An extended theory of planned behavior approach,” Sustainability, vol. 14, no. 16, p. 10424,
P. D. Astuti and I. G. A. O. Suryawardani, “Digital marketing strategies for tourism recovery in bali:
Post-covid-19 perspectives,” J. Hospitality Tourism Technol., vol. 14, no. 3, pp. 321–336, 2023.
R. Novianti, A. Afandi, and F. Sulawesty, “Community-based tourism resilience in bali: Lessons from
the covid-19 pandemic,” J. Ecotourism, vol. 22, no. 3, pp. 456–473, 2023.
A. Laksito and I. M. Yudiarta, “Grey forecasting of inbound tourism to bali and financial losses from
the covid-19,” in J. Phys.: Conf. Ser., vol. 1810, 2021, p. 012018.
S. Sun, Y. Wei, K. L. Tsui, and S. Wang, “Machine learning models for predicting international tourist
arrivals in indonesia during the covid-19 pandemic: A multisource internet data approach,” J. Tourism
Futures, vol. 8, no. 2, pp. 208–222, 2022.
R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed.
OTexts, 2021.
A. S. Wiranatha, M. Antara, and I. G. A. O. Suryawardani, “Forecasting tourism demand in bali using
time series analysis: Pre and post-covid-19 perspectives,” J. Bus. Hospitality Tourism, vol. 7, no. 1, pp.
–14, 2021.
Python Software Foundation, “Python 3.11 documentation,” 2023, accessed: 2023.
G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control, 5th ed.
Wiley, 2015.
J. Brown, “Data science in tourism forecasting,” Int. J. Data Sci., vol. 5, no. 3, pp. 123–135, 2022.
D. Pambudi, B. Suryadi, and A. Nugroho, “Tourism recovery strategies in bali post-covid-19: A sta-
keholder perspective,” J. Destin. Mark. Manag., vol. 21, p. 100612, 2021.
E. Budiyanti, “Resilience of bali tourism in facing multiple crises: A historical perspective,” in Adv.
Soc. Sci., Educ. Humanities Res., vol. 510, 2020, pp. 123–130.
I. G. A. O. Suryawardani and A. S. Wiranatha, “Sustainable tourism development in bali: Challenges
and opportunities post-covid-19,” J. Bali Stud., vol. 10, no. 2, pp. 187–204, 2020.
A. Wibowo and D. P. Sari, “Airport infrastructure and tourism growth: Evidence from indonesia’s
major gateways,” in Transp. Res. Procedia, vol. 65, 2022, pp. 189–198.
D. A. Naja, S. Suprayogi, M. A. Marfai, and D. Mardiatno, “A study on the social network analyses
of dive centers and sustainable tourism development in pemuteran bali, indonesia,” GeoJ. Tourism
Geosites, vol. 36, no. 2spl, pp. 603–615, 2021.
H. Li, H. Song, and X. Gao, “Tourism demand forecasting with big data: A deep learning approach,”
Tourism Manag., vol. 82, p. 104233, 2020.
DOI: http://dx.doi.org/10.26798/jiko.v9i2.1927
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Robertus Saptoto, Saptin Dwi Setyo Hastuti, Na'umi Berliana, priasnita Siswani