Analisis Pola Konsumsi Energi Listrik Rumah Tangga Berbasis Simulasi IoT Menggunakan Model Hybrid LSTM-Attention

Ali Impron

Abstract


Pengelolaan energi listrik rumah tangga menjadi tantangan penting seiring meningkatnya kebutuhan energi
dan keterbatasan sumber daya. Penelitian ini mengusulkan pendekatan berbasis simulasi IoT untuk menganalisis pola konsumsi energi, mendeteksi anomali, dan memberikan rekomendasi efisiensi energi tanpa perangkat fisik, menggunakan model hybrid LSTM-Attention. Dataset simulasi (14.400 sampel) dibangun dengan
EnergyPlus, divalidasi terhadap data riil, dan diolah untuk mengevaluasi performa model. Hasil menunjukkan akurasi 96%, recall 0.95 untuk anomali, dan F1-score 0.96, melampaui baseline LSTM (91.5%). Mekanisme attention memprioritaskan power_usage_per_hour (bobot 0.47), meningkatkan deteksi anomali. Rekomendasi seperti penjadwalan ulang dan penggantian perangkat menghasilkan penghematan energi 20-40%. Dengan waktu pelatihan 1,5 jam pada Google Colab, pendekatan ini menawarkan solusi skalabel dan hemat biaya untuk pengelolaan energi berkelanjutan, dengan potensi pengujian riil dan peningkatan model di masa depan.


References


R. Adha, C.-Y. Hong, M. Firmansyah, and A. Paranata, “Rebound effect with energy efficiency

determinants: A two-stage analysis of residential electricity consumption in Indonesia,” Sustainable

Production and Consumption, vol. 28, pp. 556–565, Oct. 2021. [Online]. Available: https://linkinghub.

elsevier.com/retrieve/pii/S2352550921001846

J. A. Basconcillo and A. Rimkute, “GMM Approach to Residential Electricity Consumption in Indone-

sia,” Energy RESEARCH LETTERS, vol. 4, no. 3, Aug. 2023. [Online]. Available: https://erl.scholasticahq.

com/article/33899-gmm-approach-to-residential-electricity-consumption-in-indonesia

E. A. Affum, K. Agyeman-Prempeh, C. Adumatta, K. Ntiamoah-Sarpong, and J. Dzisi, “Smart

Home Energy Management System based on the Internet of Things (IoT),” International Journal of Advanced Computer Science and Applications, vol. 12, no. 2, 2021. [Online]. Available:

http://thesai.org/Publications/ViewPaper?Volume=12&Issue=2&Code=IJACSA&SerialNo=90

N. Hossein Motlagh, M. Mohammadrezaei, J. Hunt, and B. Zakeri, “Internet of Things (IoT)

and the Energy Sector,” Energies, vol. 13, no. 2, p. 494, Jan. 2020. [Online]. Available:

https://www.mdpi.com/1996-1073/13/2/494

S. Goudarzi, M. H. Anisi, S. A. Soleymani, M. Ayob, and S. Zeadally, “An IoT-Based Predi-

ction Technique for Efficient Energy Consumption in Buildings,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 4, pp. 2076–2088, Dec. 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9462477/

S. K. Vishwakarma, P. Upadhyaya, B. Kumari, and A. K. Mishra, “Smart Energy Efficient Home

Automation System Using IoT,” in 2019 4th International Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU). Ghaziabad, India: IEEE, Apr. 2019, pp. 1–4. [Online]. Available:

https://ieeexplore.ieee.org/document/8777607/

U. Ramani, S. Kumar, T. Santhoshkumar, and M. Thilagaraj, “IoT Based Energy Management

for Smart Home,” in 2019 2nd International Conference on Power and Embedded Drive Control

(ICPEDC). Chennai, India: IEEE, Aug. 2019, pp. 533–536. [Online]. Available: https://ieeexplore.

ieee.org/document/9036546/

F. Condon, J. M. Martínez, A. M. Eltamaly, Y.-C. Kim, and M. A. Ahmed, “Design and Implementation

of a Cloud-IoT-Based Home Energy Management System,” Sensors, vol. 23, no. 1, p. 176, Dec. 2022.

[Online]. Available: https://www.mdpi.com/1424-8220/23/1/176

M. Kardi, T. AlSkaif, B. Tekinerdogan, and J. P. S. Catalao, “Anomaly Detection in Electricity

Consumption Data using Deep Learning,” in 2021 IEEE International Conference on Environment

and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe

(EEEIC / I&CPS Europe). Bari, Italy: IEEE, Sep. 2021, pp. 1–6. [Online]. Available: https:

//ieeexplore.ieee.org/document/9584650/

G. Hafeez, Z. Wadud, I. U. Khan, I. Khan, Z. Shafiq, M. Usman, and M. U. A. Khan,

“Efficient Energy Management of IoT-Enabled Smart Homes Under Price-Based Demand Response

Program in Smart Grid,” Sensors, vol. 20, no. 11, p. 3155, Jun. 2020. [Online]. Available:

https://www.mdpi.com/1424-8220/20/11/3155

R. H. Fard and S. Hosseini, “Machine Learning algorithms for prediction of energy consumption and

IoT modeling in complex networks,” Microprocessors and Microsystems, vol. 89, p. 104423, Mar. 2022.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0141933121005640

G. Vats, S. Tanwar, and P. K. Sharma, “A Simulation-Based Analysis of IoT Security Architecture in

Smart Homes,” in 2024 International Conference on Computing, Sciences and Communications (ICCSC).

Ghaziabad, India: IEEE, Oct. 2024, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/

/

R. E. Alden, H. Gong, C. Ababei, and D. M. Ionel, “LSTM Forecasts for Smart Home Electricity

Usage,” in 2020 9th International Conference on Renewable Energy Research and Application

(ICRERA). Glasgow, United Kingdom: IEEE, Sep. 2020, pp. 434–438. [Online]. Available:

https://ieeexplore.ieee.org/document/9242804/

S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, L. Delahoche, J.-B. Masson, and N. Derbel, “Prediction

of energy consumption based on LSTM Artificial Neural Network,” in 2022 19th International

Multi-Conference on Systems, Signals & Devices (SSD). Sétif, Algeria: IEEE, May 2022, pp. 521–526.

[Online]. Available: https://ieeexplore.ieee.org/document/9955883/

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp.

–1780, Nov. 1997. [Online]. Available: https://direct.mit.edu/neco/article/9/8/1735-1780/6109




DOI: http://dx.doi.org/10.26798/jiko.v9i2.1922

Article Metrics

Abstract view : 0 times
PDF (Bahasa Indonesia) - 0 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Ali Impron


JIKO (Jurnal Informatika dan Komputer)

Published by
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)

Jl. Raya Janti (Majapahit) No. 143 Yogyakarta, 55198
Telp. (0274)486664

Website : https://www.utdi.ac.id/

e-ISSN : 2477-3964 
p-ISSN : 2477-4413