Implementasi Algoritma K-Means Clustering untuk Strategi Promosi Kampus IBISA
Abstract
Penerimaan Mahasiswa Baru (PMB) adalah kegiatan yang wajib dilaksanakan di setiap universitas, seperti halnya pada IBISA. Namun, di Jawa Tengah terdapat beberapa kampus yang melakukan PMB. Oleh karena itu, perlu adanya strategi promosi untuk mendapatkan jumlah mahasiswa baru yang lebih banyak. Analisa strategi promosi IBISA yang sesuai dan akurat dalam mendaptkan mahasiswa baru sangat diperlukan. Teknik promosi yang baik dapat ditentukan menggunakan algoritma clustering. Algoritma clustering yang dapat dimplementasikan, yaitu algoritma K-Means. Metode penelitian yang digunakan, yaitu metode kuantitatif. Objek penelitian berupa data mahasiswa baru IBISA tahun 2023. Hasil dari penelitian ini, yaitu diperoleh 2 cluster. Cluster 1 adalah cluster dengan nilai centroid tinggi terdiri dari 9 anggota. Cluster 2 adalah cluster dengan nilai centroid rendah terdiri dari 26 anggota. Hal tersebut menunjukan bahwa strategi promosi lebih lebih difokuskan pada sosialisasi sekolah di Purworejo. Promosi dapat lebih ditingkatkan melalui sosial media ataupun iklan di platform online
Keywords
Full Text:
PDF (Bahasa Indonesia)DOI: http://dx.doi.org/10.26798/jiko.v8i2.1307
Article Metrics
Abstract view : 385 timesPDF (Bahasa Indonesia) - 142 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ummu Wachidatul Latifah