KOMPARASI KINERJA ALGORITMA XGBOOST DAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK DIAGNOSIS PENYAKIT KANKER PAYUDARA
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Fauzi, A., Supriyadi, R., & Maulidah, N. (2020). Deteksi Penyakit Kanker Payudara dengan Seleksi Fitur berbasis Principal Component Analysis dan Random Forest. Jurnal Infortech, 2(1), 96-101.
Ma’arif, F., & Arifin, T. (2017). Optimasi Fitur Menggunakan Backward Elimination Dan Algoritma SVM Untuk Klasifikasi Kanker Payudara. Jurnal Informatika, 4(1).
Sinha, N. K., Khulal, M., Gurung, M., & Lal, A. (2020). Developing a web based system for breast cancer prediction using xgboost classifier. International Journal of Engineering Research Technology (IJERT), 9.
Prahartiwi, L. I., & Dari, W. (2021). Komparasi Algoritma Naive Bayes, Decision Tree dan Support Vector Machine untuk Prediksi Penyakit Kanker Payudara.
Maimon, O., & Rokach, L. (2005). Introduction to knowledge discovery in databases. In Data mining and knowledge discovery handbook (pp. 1-17). Springer, Boston, MA.
Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE Data Eng. Bull., 23(4), 3-13.
Jiang, Y., Cukic, B., & Menzies, T. (2008, July). Can data transformation help in the detection of fault-prone modules?. In Proceedings of the 2008 workshop on Defects in large software systems (pp. 16-20).
Bhattacharya, S., Maddikunta, P. K. R., Meenakshisundaram, I., Gadekallu, T. R., Sharma, S., Alkahtani, M., & Abidi, M. H. (2021). Deep neural networks based approach for battery life prediction. Computers, Materials & Continua, 69(2), 2599-2615.
Paper, D., & Paper, D. (2020). Scikit-Learn Classifier Tuning from Complex Training Sets. Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python, 165-188.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37.
Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In Machine Learning (pp. 101-121). Academic Press.
Li, S., & Zhang, X. (2020). Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm.
Neural Computing and Applications, 32(7), 1971-1979.
Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190-197.
Ranjan, G. S. K., Verma, A. K., & Radhika, S. (2019, March). K-nearest neighbors and grid search cv based real time fault monitoring system for industries. In 2019 IEEE 5th international conference for convergence in technology (I2CT) (pp. 1-5). IEEE.
Handayani, A., Jamal, A., & Septiandri, A. A. (2017). Evaluasi Tiga Jenis Algoritme Berbasis Pembelajaran Mesin untuk Klasifikasi Jenis Tumor Payudara. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 6(4), 394-403.
DOI: http://dx.doi.org/10.26798/jiko.v6i1.500
Article Metrics
Abstract view : 1841 timesPDF (Bahasa Indonesia) - 967 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Muhammad Ravly Andryan, Muhamad Fajri, Nina Sulistyowati