ANALISIS CLUSTER DENGAN ALGORITMA K-MEANS, FUZZY C-MEANS DAN HIERARCHICAL CLUSTERING (Studi Kasus: Indeks Pembangunan Manusia tahun 2019)

Rizqina Rahmati

Abstract


ABSTRAK

Analisis cluster adalah suatu metode data mining untuk mengelompokkan data atau objek yang didasrkan pada informasi yang ada untuk menggambarkan relasi yang terdapat antara objek tersebut. Analisis cluster bertujuan untuk membuat objek yang digabungkan dalam cluster memiliki persamaan yang tinggi dan berbeda antar cluster. Pembangunan IPM di setiap Kabupaten/Kota sangat tidak merata. Pengelompokan IPM ini dilakukan untuk mengetahui variable IPM yang harus di prioritaskan dalam pembangunan. Dalam penelitian ini digunakan tiga metode pengelompokan yaitu pengelompokkan dengan metode K-Means, Fuzzy C-Means dan Hierarchical clustering. Penentuan jumlah cluster yang optimal dan metode pengelompokan terbaik dengan membandingkan Indeks Silhouette, Davis Bouldin dan Calinski Harabasz dari ketiga metode pengelompokkan. Metode yang memiliki indeks optimal akan dipilih sebagai metode terbaik. Hasil yang didapat untuk pengelompokan data IPM Kabupaten/Kota tahun 2019 adalah terdapat 2 jumlah cluster optimal untuk metode K-Means dan Hierarchical dan 3 jumlah cluster untuk metode Fuzzy C-Means. Dengan membandingkan nilai validasi antar ketiga metode, didapat bahwa metode K-Means adalah metoode terbaik untuk pengelompokan data IPM Kabupaten/Kota tahun 2019.

Kata kunci: IPM, K-Means, Fuzzy C-Means, Hierarchical, Silhouette, Davies Bouldin, Calinski Harabasz

 


Keywords


IPM, K-Means, Fuzzy C-Means, Hierarchical, Silhouette, Davies Bouldin, Calinski Harabasz



DOI: http://dx.doi.org/10.26798/jiko.v5i2.422

Article Metrics

Abstract view : 1785 times
PDF (Bahasa Indonesia) - 1137 times

Refbacks





Copyright (c) 2021 Rizqina Rahmati


JIKO (Jurnal Informatika dan Komputer)

Published by
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)

Jl. Raya Janti (Majapahit) No. 143 Yogyakarta, 55198
Telp. (0274)486664

Website : https://www.utdi.ac.id/

e-ISSN : 2477-3964 
p-ISSN : 2477-4413