PREDIKSI KEJAHATAN DENGAN MODEL GRAFIK, DETEKSI ANOMALI, DAN PEMBELAJARAN MULTI-MODAL

Muhammad Alyfansyah Rizky Anggara, Sri Redjeki

Abstract


Kejahatan tetap menjadi tantangan yang kompleks dan terus-menerus yang memengaruhi keamanan dan stabilitas masyarakat di Indonesia. Analisis kejahatan yang efektif, yang penting untuk memahami pola dan merumuskan kebijakan keamanan publik yang responsif, sering kali terhambat oleh sifat data kejahatan yang luas dan beragam. Makalah ini mengusulkan pendekatan baru yang memanfaatkan Pembelajaran Multi-Modal Berbasis Grafik yang terintegrasi dengan Deteksi Anomali untuk meningkatkan prediksi tingkat kejahatan dan menginformasikan pengembangan kebijakan keamanan publik di Indonesia. Kami mengintegrasikan kumpulan data heterogen termasuk data sosio-demografis, ekonomi, lingkungan, dan sentimen publik yang berasal dari Twitter. Alur kerja praproses yang komprehensif dikembangkan, yang mencakup pembersihan data, rekayasa fitur, dan normalisasi, diikuti oleh konstruksi grafik spasio-temporal di mana simpul mewakili kombinasi provinsi-tahun dan tepi menangkap kedekatan geografis dan suksesi temporal. Model Jaringan Konvolusional Grafik (GCN) digunakan untuk mempelajari hubungan yang kompleks dalam struktur grafik multi-modal ini. Sementara evaluasi awal menghasilkan Root Mean Squared Error (RMSE) Uji sekitar 306-314 pada skala asli, yang menunjukkan ruang untuk peningkatan presisi prediktif, utilitas inti model terletak pada kemampuannya untuk mengidentifikasi penyimpangan yang signifikan.

 


References


O. E. Jonathan, A. J. Olusola, T. C. Bernadin, and T. M. Inoussa, “Impacts of Crime on Socio-Economic Development Akinyede Joseph Olusola Tohozin Coovi Aime Bernadin Toko Mouhamadou Inoussa,” Mediterr. J. Soc. Sci., vol. 12, no. 5, pp. 71–81, 2021.

A. Hananto, “Historical Perspective on Why Indonesia has Big Population,” seasia.co, 2023. https://seasia.co/2023/03/20/historical-perspective-of-indonesia-s-big-population (accessed May 25, 2025).

“Badan Pusat Statistik,” bps.go.id. https://www.bps.go.id/id (accessed May 25, 2025).

K. Russell and S. Moore, Research integration, vol. 31, no. 2–3. 1994. doi: 10.1007/BF00666170.

A. C. Ikegwu, H. F. Nweke, C. V. Anikwe, U. R. Alo, and O. R. Okonkwo, “Big Data Analytics for Data-driven Industry: A Review of Data Sources, Tools, Challenges, Solutions and Research Directions,” Cluster Comput., vol. 25, no. 5, pp. 3343–3387, 2022, doi: 10.1007/s10586-022-03568-5.

J. Jin, “Research and Construction of Student Management Platform for Special Needs Students with Decision Tree Model and Big Data Technology,” Syst. Soft Comput., p. 200310, 2025, doi: 10.1016/j.sasc.2025.200310.

F. Jiang and J. Ma, “Graph-based machine learning for high-resolution assessment of pedestrian-weighted exposure to air pollution,” Resour. Environ. Sustain., vol. 20, no. April, p. 100219, 2025, doi: 10.1016/j.resenv.2025.100219.

H. Zhou, Y. Zhao, H. Li, T. Pfaff, and N. Li, “A multi-level graph-based surrogate model for real-time high-fidelity sheet forming simulations,” Adv. Eng. Informatics, vol. 66, no. March, p. 103458, 2025, doi: 10.1016/j.aei.2025.103458.

H. Xu et al., “Pisces: A multi-modal data augmentation approach for drug combination synergy prediction,” Cell Genomics, p. 100892, 2025, doi: 10.1016/j.xgen.2025.100892.

Z. Barraz, I. Sebari, H. Oufettoul, K. Ait el kadi, N. Lamrini, and I. Ait Abdelmoula, “A holistic multimodal approach for real-time anomaly detection and classification in large-scale photovoltaic plants,” Energy AI, vol. 21, no. May, p. 100525, 2025, doi: 10.1016/j.egyai.2025.100525.

W. Lim, K. S. C. Yong, B. T. Lau, and C. C. L. Tan, “Future of generative adversarial networks (GAN) for anomaly detection in network security: A review,” Comput. Secur., vol. 139, no. January, p. 103733, 2024, doi: 10.1016/j.cose.2024.103733.

N. Waddenkery and S. Soma, “Adam-Dingo optimized deep maxout network-based video surveillance system for stealing crime detection,” Meas. Sensors, vol. 29, no. March, p. 100885, 2023, doi: 10.1016/j.measen.2023.100885.

L. Macis, M. Tagliapietra, R. Meo, and P. Pisano, “Breaking the trend: Anomaly detection models for early warning of socio-political unrest,” Technol. Forecast. Soc. Change, vol. 206, no. June, p. 123495, 2024, doi: 10.1016/j.techfore.2024.123495.

H. Kopka and P. W. Daly, A Guide to LaTeX and Electronic Publishing. 2004.

H. H. Nuha, A. Balghonaim, B. Liu, M. Mohandes, M. Deriche, and F. Fekri, “Deep Neural Networks with Extreme Learning Machine for Seismic Data Compression,” Arab. J. Sci. Eng., 2019, doi: 10.1007/s13369-019-03942-3.

H. N. B. Liu, M. Mohandes, “Seismic model estimation using particle-swarm optimization,” 2018.

R. Nivetha and Dr. C. Meenakshi, “Predicting Crime Hotspots using Machine Learning Techniques,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 12, no. 4, pp. 158–161, 2024, doi: 10.48175/ijetir-1229.

Z. A. Mekonnen, E. M. Engda, K. F. Deraro, N. Agegnehu, T. M. Reda, and M. Jothimani, “Spatio-temporal crime pattern analysis in Addis Ketema, Addis Ababa, Ethiopia: GIS and R based approaches,” Sci. African, vol. 28, no. February, p. e02656, 2025, doi: 10.1016/j.sciaf.2025.e02656.

J. Yin, “Crime Prediction Methods Based on Machine Learning: A Survey,” Comput. Mater. Contin., vol. 74, no. 2, pp. 4601–4629, 2023, doi: 10.32604/cmc.2023.034190.

M. Lim, A. Abdullah, and N. Z. Jhanjhi, “Performance optimization of criminal network hidden link prediction model with deep reinforcement learning,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1202–1210, 2021, doi: 10.1016/j.jksuci.2019.07.010.

T. Alsahfi and K. U. Qasim, “TraffiCoT-R: A framework for advanced spatio-temporal reasoning in large language models,” Alexandria Eng. J., vol. 128, no. May, pp. 464–475, 2025, doi: 10.1016/j.aej.2025.05.027.

P. P. Sadhu, K. Appanolla, M. Mahesh, C. Anand, G. Shriya, and P. Suraj, “FLC-Net : Innovative fraud classification in loan applications with dual channel graph advanced neural network,” Syst. Soft Comput., vol. 7, no. February, p. 200307, 2025, doi: 10.1016/j.sasc.2025.200307.

Y. A. Samaila et al., “Real-Time Deep Anomaly Detection: An Overview of Benchmark Datasets and Performance Metrics,” Transp. Res. Procedia, vol. 84, pp. 418–425, 2025, doi: 10.1016/j.trpro.2025.03.091.

L. Yang, S. Li, C. Zhu, A. Zhang, and Z. Liao, “Spatio-temporal correlation-based multiple regression for anomaly detection and recovery of unmanned aerial vehicle flight data,” Adv. Eng. Informatics, vol. 60, no. April 2023, p. 102440, 2024, doi: 10.1016/j.aei.2024.102440.

M. Mohandes, A. Hussain, P. Khan, and H. Nuha, “Non-Vital Privacy Compromise for Improved Services in Pilgrimage Seasons,” 2019.




DOI: http://dx.doi.org/10.26798/jiko.v9i3.2162

Article Metrics

Abstract view : 0 times
PDF (Bahasa Indonesia) - 0 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Muhammad Alyfansyah Rizky Muhammad Alyfansyah Rizky


JIKO (Jurnal Informatika dan Komputer)

Published by
Lembaga Penelitian dan Pengabdian Masyarakat
Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)

Jl. Raya Janti (Majapahit) No. 143 Yogyakarta, 55198
Telp. (0274)486664

Website : https://www.utdi.ac.id/

e-ISSN : 2477-3964 
p-ISSN : 2477-4413