DIABETES PREDICTION USING MACHINE LEARNING
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
E. Kogan et al., “A machine learning approach to identifying patients with pulmonary hypertension using realworld electronic health records,” Int. J. Cardiol., vol. 374, no. December 2022, pp. 95–99, 2023, doi:
1016/j.ijcard.2022.12.016.
E. Martinez-Ríos, L. Montesinos, and M. Alfaro-Ponce, “A machine learning approach for hypertension
detection based on photoplethysmography and clinical data,” Comput. Biol. Med., vol. 145, no. January, p. 105479,
, doi: 10.1016/j.compbiomed.2022.105479.
P. Argiento et al., “A pulmonary hypertension targeted algorithm to improve referral to right heart
catheterization: A machine learning approach,” Comput. Struct. Biotechnol. J., vol. 24, no. May, pp. 746–753, 2024,
doi: 10.1016/j.csbj.2024.11.031.
B. Kovács, F. Tinya, C. Németh, and P. Ódor, “Unfolding the effects of different forestry treatments on
microclimate in oak forests: results of a 4-yr experiment,” Ecol. Appl., vol. 30, no. 2, pp. 321–357, 2020, doi:
1002/eap.2043.
E. Martinez-Ríos, L. Montesinos, M. Alfaro-Ponce, and L. Pecchia, “A review of machine learning in
hypertension detection and blood pressure estimation based on clinical and physiological data,” Biomed. Signal
Process. Control, vol. 68, no. May, p. 102813, 2021, doi: 10.1016/j.bspc.2021.102813.
N. P. Shetty, J. Shetty, V. Hegde, S. D. Dharne, and M. Kv, “A machine learning-based clinical decision
support system for effective stratification of gestational diabetes mellitus and management through Ayurveda,” J.
Ayurveda Integr. Med., vol. 15, no. 6, p. 101051, 2024, doi: 10.1016/j.jaim.2024.101051.
P. Wändell et al., “A machine learning tool for identifying patients with newly diagnosed diabetes in primary
care,” Prim. Care Diabetes, vol. 18, no. June, pp. 501–505, 2024, doi: 10.1016/j.pcd.2024.06.010.
J. Wallensten et al., “Machine learning to detect Alzheimer’s disease with data on drugs and diagnoses,” J.
Prev. Alzheimer’s Dis., vol. 12, no. 5, p. 100115, 2025, doi: 10.1016/j.tjpad.2025.100115.
N. Aini, M. Arif, I. T. Agustin, and Z. B. Toyibah, “Implementasi Algoritma Random Forest untuk Klasifikasi
Bidang MSIB di Prodi Pendidikan Informatika,” J. Inform., vol. 11, no. 1, pp. 11–16, 2024, doi:
31294/inf.v11i1.20637.
JIKO (JURNAL INFORMATIKA DAN KOMPUTER) 9
Y. Umemura, N. Okada, H. Ogura, J. Oda, and S. Fujimi, “A machine learning model for early and accurate
prediction of overt disseminated intravascular coagulation before its progression to an overt stage,” Res. Pract.
Thromb. Haemost., vol. 8, no. 5, p. 102519, 2024, doi: 10.1016/j.rpth.2024.102519.
D. Kurniawan, E. Rekawati, and J. Sahar, “PELAYANAN KESEHATAN PADA LANSIA DENGAN
HIPERTENSI DI TINGKAT PELAYANAN PRIMER : SYSTEMATIC REVIEW PENDAHULUAN Penderita
hipertensi terus mengalami peningkatan sejalan dengan meningkatnya usia harapan hidup . Penderita hipertensi di
dunia yaitu sebesar 22 ,” vol. 10, pp. 424–435, 2021.
S. Akter, Z. Liu, E. J. Simoes, and P. Rao, “Using machine learning and electronic health record ( EHR ) data
for the early prediction of Alzheimer ’ s Disease and Related Dementias,” J. Prev. Alzheimer’s Dis., no. April, p.
, 2025, doi: 10.1016/j.tjpad.2025.100169.
S. Jangili, H. Vavilala, G. S. B. Boddeda, S. M. Upadhyayula, R. Adela, and S. R. Mutheneni, “Machine
learning-driven early biomarker prediction for type 2 diabetes mellitus associated coronary artery diseases,” Clin.
Epidemiol. Glob. Heal., vol. 24, no. October, p. 101433, 2023, doi: 10.1016/j.cegh.2023.101433.
L. Alomari, Y. Jarrar, Z. Al-Fakhouri, E. Otabor, J. Lam, and J. Alomari, “A machine learning–based risk
prediction model for atrial fibrillation in critically ill patients,” Hear. Rhythm O2, pp. 1–9, 2025, doi:
1016/j.hroo.2025.02.008.
M. Syahrul Efendi et al., “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Penerapan Algoritma
Random Forest Untuk Prediksi Penjualan Dan Sistem Persediaan Produk,” Media Online), vol. 5, no. 1, p. 20, 2024,
doi: 10.30865/resolusi.v5i1.2149.
DOI: http://dx.doi.org/10.26798/jiko.v9i3.2104
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Elisabet da Conceicao Pereira, Widyastuti Andriyani