Klasifikasi Radio Siaran FM Berdasarkan Data IQ Menggunakan Convolutional Neural Networks
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
T. Pasarelska, “Analysis of radio frequency spectrum planning and allocation for the deployment of new modern broadband networks and technologies,” Yearb. Telecommun., vol. 10, pp. 79–88, 2024, doi: 10.33919/YTelecomm.23.10.8.
H. N. Nguyen, M. Vomvas, T. D. Vo-Huu, and G. Noubir, “WRIST: Wideband, Real-Time, Spectro-Temporal RF Identification System Using Deep Learning,” IEEE Trans. Mob. Comput., vol. 23, no. 2, pp. 1550–1567, 2024, doi: 10.1109/TMC.2023.3240971.
A. Kumar, N. Gaur, S. Chakravarty, M. H. Alsharif, P. Uthansakul, and M. Uthansakul, “Analysis of spectrum sensing using deep learning algorithms : CNNs and RNNs,” Ain Shams Eng. J., vol. 15, no. 3, p. 102505, 2024, doi: 10.1016/j.asej.2023.102505.
Y. Chen, P. Li, E. Yan, Z. Jing, and G. Liu, “A Knowledge Graph-Driven CNN for Radar Emitter Identification,” Remote Sens., vol. 15, no. 3289, 2023, doi: 10.3390/rs15133289.
S. Kunze and B. Saha, “Drone Classification with a Convolutional Neural Network Applied to Raw IQ Data,” in 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 2022, pp. 1–4. doi: 10.23919/AT-AP-RASC54737.2022.9814170.
T. Morehouse, C. Montes, and R. Zhou, “Faster Region-Based CNN Spectrum Sensing and Signal Identification in Cluttered RF Environments,” 2023. doi: 10.48550/arXiv.2303.09854.
L. J. Wong, W. C. Headley, and A. J. Michaels, “Specific Emitter Identification Using Convolutional Neural Network-Based IQ Imbalance Estimators,” IEEE Access, vol. 7, pp. 33544–33555, 2019, doi: 10.1109/ACCESS.2019.2903444.
M. Ramasubramanian, C. Banerjee, D. Roy, E. Pasiliao, and T. Mukherjee, “Exploiting Spatio-Temporal Properties of I/Q Signal Data Using 3D Convolution for RF Transmitter Identification,” IEEE J. Radio Freq. Identif., vol. 5, no. 2, pp. 113–127, 2021, doi: 10.1109/JRFID.2021.3051901.
S. Gao, “Alzheimer’s disease diagnosis via 5-layer Convolutional Neural Network and Data Augmentation,” EAI Endorsed Trans. e-Learning, vol. 7, no. 23, 2021, doi: 10.4108/eai.16-9-2021.170957.
S. Ghosal and K. Sarkar, “Rice Leaf Diseases Classification Using CNN With Transfer Learning,” in 2020 IEEE Calcutta Conference (CALCON), 2020, pp. 230–236. doi: 10.1109/CALCON49167.2020.9106423.
DOI: http://dx.doi.org/10.26798/jiko.v9i3.1978
Article Metrics
Abstract view : 0 timesPDF (Bahasa Indonesia) - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Agus Sukarno, Arief Setyanto