The Prediction on the Students’ Graduation Timeliness Using Naive Bayes Classification and K-Nearest Neighbor
Abstract
Full Text:
PDFReferences
W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model drop out potential The effect of mining data k-means clustering toward students profile model drop out potential,” J. Phys. Conf. Ser., 2018, doi{10.1088/1742-6596/1007/1/012049}.
Kementerian Ristekdikti, “Statistik Pendidikan Tinggi,” Pus. Data dan Inf. Ilmu Pengetahuan, Teknol. dan Pendidik. Tinggi, 2018.
F. Ahmad, N. H. Ismail, and A. A. Aziz, “The prediction of students{textquotesingle} academic performance using classification data mining techniques,” Appl. Math. Sci., vol. 9, pp. 6415–6426, 2015, doi{10.12988/ams.2015.53289}.
M. Wook, Z. M. Yusof, and M. Z. A. Nazri, “The Acceptance of Educational Data Mining Technology among Students in Public Institutions of Higher Learning in Malaysia,” Int. J. Futur. Comput. Commun., vol. 4, no. 2, pp. 112–117, Apr. 2015, doi{10.7763/ijfcc.2015.v4.367}.
V. L. Miguéis, A. Freitas, P. J. V Garcia, and A. Silva, “Early segmentation of students according to their academic performance: A predictive modelling approach,” Decis. Support Syst., vol. 115, pp. 36–51, Nov. 2018, doi{10.1016/j.dss.2018.09.001}.
S. Hussain, F. M. Dahan, Neama Abdulaziz, Ba-Alwib, and N. Ribata, “Educational Data Mining and Analysis of Students ’ Academic Performance Educational Data Mining and Analysis of Students ’ Academic Performance Using WEKA,” Indones. J. Electr. Eng. Comput. Sci., vol. 9, no. February, pp. 447–459, 2018, doi{10.11591/ijeecs.v9.i2.pp447-459}.
N. Aminudin, M. Huda, A. Kilani, W. Hassan, W. Embong, and A. M. Mohamed, “Higher education selection using simple additive weighting,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 211–217, 2018.
V. N. Vapnik, “Statistics The Elements of Statistical Learning,” Math. Intell., vol. 27, no. 2, pp. 83–85, 2009, [Online]. Available: url{http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf}.
Piotr Kokoszka and M. Reimherr, Introduction to Functional Data Analysis. 2017.
A. J. Larner, The 2x2 Matrix: Contingency, Confusion and the Metrics of Binary Classification. 2021.
DOI: http://dx.doi.org/10.26798/jiss.v1i1.597
Article Metrics
Abstract view : 568 timesPDF - 470 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Anwar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.