IOT BASED SOIL MOISTURE MONITORING AND SOIL MOISTURE PREDICTION USING LINEAR REGRESSION (CASE STUDY OF VINCA PLANTS)

Kuindra Iriyanta, Bambang Purnomosidi Dwi Putranto, Widyastuti Andriyani

Abstract


Soil moisture is something that becomes important. Indonesia as an agricultural country, most of the population has a profession as a farmer. In agriculture, one of the important parts is the water composition in the soil or soil moisture. One attempt to maintain soil moisture is to provide sufficient water intake to the soil. However, in practice, it is sometimes complicated for farmers to do proper irrigation of their agricultural land. This humidity condition will ultimately determine the success of vinca plant cultivators. The accuracy of giving water both in terms of time management and volume are two things which are an important focus of vinca crop growing. This system is designed using a humidity sensor which is used to measure the moisture composition contained in the soil, and an air temperature sensor. The NodeMCU ESP2866 microcontroller acts as a link between Google spreadsheet sensors. NodeMCU ESP2866 will send humidity and temperature sensor reading data to Google spreadsheets using a RESTfull API which can connect one application to another. The sensor data is then saved to Google spreadsheet and processed using the linear regression method. The processing results will be displayed on the Google Data Studio dashboard. The output of this process is to provide information about soil moisture conditions, notification of soil moisture conditions if it is too dry or damp, thus the prevention of the death of vinca plants can be carried out. The benefit for users is that they can carry out periodic and real-time monitoring by simply using the Telegram instant messaging application, which is expected to reduce the risk of plant death due to drought or excessive watering

Full Text:

PDF

References


Karyati, R. O. Putri, and M. Syafrudin, “Soil Temperature and Humidity at Post Mining Revegetation in PT Adimitra Baratama Nusantara, East Kalimantan Province,” Agrifor, vol. 17, no. 1, pp. 103–114, 2018.

Rahmi. H. Nurhaeni. S, Muharam, “Pengaruh Berbagai Jenis Zat Pengatur Tumbuh dan Asal Stek Batang Terhadap Pertumbuhan Vegetatif Bibit Tanaman Tapak Dara (Catharanthus roseus (L.) G. Don),” Jurnal Agrotek Indonesia, vol. 2, no. 5, p. 47, 2020.

Husdi, “MONITORING KELEMBABAN TANAH PERTANIAN MENGGUNAKAN SOIL MOISTURE SENSOR FC-28 DAN ARDUINO UNO,” Jurnal Ilmiah, vol. 10, pp. 237–243, 2018, [Online]. Available: https://media.neliti.com/media/publications/269207-monitoring-kelembaban-tanah-pertanian-me-fadb929a.pdf

S. A. Kalaian and R. Kasim, “Predictive Analytics,” in Decision Management: Concepts, Methodologies, Tools, and Applications, 2017. doi: 10.4018/978-1-5225-1837-2.ch004.

R. Safitri, W, “Analisis Korelasi Pearson Dalam Menentukan Hubungan Antara Kejadian Demam Berdarah Dengue Dengan Kepadatan Penduduk Di Kota Surabaya Pada Tahun 2012 - 2014,” Jurnal Kesehatan Masyarakat, vol. 1, no. 3, pp. 1–9, 2014.

J. Han and M. Kamber, Data Mining: Concepts and Techniques (2nd edition). 2006. doi: 10.1007/978-3-642-19721-5.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.

Usamah Jaisyurahman, Desta Wirnas, Trikoesoemaningtyas, and Dan Heni Purnamawati, “Dampak Suhu Tinggi terhadap Pertumbuhan dan Hasil Tanaman Padi,” Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), vol. 47, no. 3, pp. 248–254, 2020, doi: 10.24831/jai.v47i3.24892.

S. Sukarman, I. Darwati, and D. Rusmin, “KARAKTER MORFOLOGI DAN FISIOLOGI TAPAK DARA (Vinca rosea L.) PADA BEBERAPA CEKAMAN AIR,” Jurnal Penelitian Tanaman Industri, vol. 6, no. 2. p. 50, 2020. doi: 10.21082/jlittri.v6n2.2000.50-54.

G. Snipes, “Product Review : Google Data Studio,” J Libr Sch Commun, vol. 6, no. 1, p. 5, 2018.




DOI: http://dx.doi.org/10.26798/jiss.v2i1.929

Article Metrics

Abstract view : 471 times
PDF - 434 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Kuindra Iriyanta, Bambang Purnomosidi Dwi Putranto, Widyastuti Andriyani


JOURNAL OF INTELLIGENT SOFTWARE SYSTEMS

Published by

Magister Teknologi Informasi
Lembaga Penelitian dan Pengabdian Masyarakat

Universitas Teknologi Digital Indonesia (d.h STMIK AKAKOM)
Jl. Raya Janti Jl. Majapahit No.143, Jaranan, Banguntapan,
Kec. Banguntapan, Kabupaten Bantul,
Daerah Istimewa Yogyakarta 55918

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.